Chapter 1: REMOVING BRACKETS

To remove a single bracket, we multiply every term in the bracket by the number or the expression on the outside:

Examples

1)

2)

$$
\begin{aligned}
-2(2 x-3) & =(-2)(2 x)+(-2)(-3) \\
& =-4 x+6
\end{aligned}
$$

To expand two brackets, we must multiply everything in the first bracket by everything in the second bracket. We can do this in a variety of ways, including

* the smiley face method
* FOIL (Fronts Outers Inners Lasts)
* using a grid.

Examples:

1)

$$
(x+1)(x+2)=x(x+2)+1(x+2)
$$

or

or

	x	1
x	x^{2}	x
2	$2 x$	2

$$
\begin{aligned}
(x+1)(x+2) & =x^{2}+2 x+x+2 \\
& =x^{2}+3 x+2
\end{aligned}
$$

2)

$$
\begin{gathered}
(x-2)(2 x+3)=x(2 x+3)-2(2 x+3) \\
=2 x^{2}+3 x-4 x-6 \\
=2 x^{2}-x-6
\end{gathered}
$$

or

or

	x	-2
$2 x$	$2 x^{2}$	$-4 x$
3	$3 x$	-6

$$
\begin{aligned}
(2 x+3)(x-2) & =2 x^{2}+3 x-4 x-6 \\
& =2 x^{2}-x-6
\end{aligned}
$$

EXERCISE A Multiply out the following brackets and simplify.

1. $7(4 x+5)$
2. $-3(5 x-7)$
3. $5 a-4(3 a-1)$
4. $4 y+y(2+3 y)$
5. $-3 x-(x+4)$
6. $5(2 x-1)-(3 x-4)$
7. $(x+2)(x+3)$
8. $\quad(t-5)(t-2)$
9. $(2 x+3 y)(3 x-4 y)$
10. $4(x-2)(x+3)$
11. $(2 y-1)(2 y+1)$
12. $(3+5 x)(4-x)$

Two Special Cases

Perfect Square:

$(x+a)^{2}=(x+a)(x+a)=x^{2}+2 a x+a^{2}$
$(2 x-3)^{2}=(2 x-3)(2 x-3)=4 x^{2}-12 x+9$

Difference of two squares:

$$
\begin{aligned}
(x-a)(x+a) & =x^{2}-a^{2} \\
(x-3)(x+3) & =x^{2}-3^{2} \\
& =x^{2}-9
\end{aligned}
$$

EXERCISE B Multiply out

1. $(x-1)^{2}$
2. $(3 x+5)^{2}$
3. $(7 x-2)^{2}$
4. $(x+2)(x-2)$
5. $(3 x+1)(3 x-1)$
6. $(5 y-3)(5 y+3)$
