Chapter 4: FACTORISING

Common factors

We can factorise some expressions by taking out a common factor.

Example 1:	Factorise $12x - 30$	
Solution: outsid	6 is a common factor to both 12 and 30. We can therefore factorise by taking 6 utside a bracket:	
	12x - 30 = 6(2x - 5)	
Example 2:	Factorise $6x^2 - 2xy$	
Solution:	2 is a common factor to both 6 and 2. Both terms also contain an <i>x</i> . So we factorise by taking 2 <i>x</i> outside a bracket. $6x^2 - 2xy = 2x(3x - y)$	
Example 3:	Factorise $9x^3y^2 - 18x^2y$	
Solution:	9 is a common factor to both 9 and 18. The highest power of x that is present in both expressions is x^2 . There is also a y present in both parts. So we factorise by taking $9x^2y$ outside a bracket: $9x^3y^2 - 18x^2y = 9x^2y(xy - 2)$	
Example 4:	Factorise $3x(2x-1) - 4(2x-1)$	
Solution:	There is a common bracket as a factor. So we factorise by taking $(2x - 1)$ out as a factor. The expression factorises to $(2x - 1)(3x - 4)$	

Exercise A

Factorise each of the following

- 1) 3x + xy
- 2) $4x^2 2xy$
- $3) \qquad pq^2 p^2 q$
- 4) $3pq 9q^2$
- 5) $2x^3 6x^2$
- 6) $8a^5b^2 12a^3b^4$
- 7) 5y(y-1) + 3(y-1)

Factorising quadratics

Simple quadratics: Factorising quadratics of the form $x^2 + bx + c$

The method is:

<u>Step 1</u>: Form two brackets $(x \dots)(x \dots)$

<u>Step 2</u>: Find two numbers that multiply to give c and add to make b. These two numbers get written at the other end of the brackets.

Example 1: Factorise $x^2 - 9x - 10$.

Solution: We need to find two numbers that multiply to make -10 and add to make -9. These numbers are -10 and 1. Therefore $x^2 - 9x - 10 = (x - 10)(x + 1)$.

General quadratics: Factorising quadratics of the form $ax^2 + bx + c$

The method is:

<u>Step 1</u>: Find two numbers that multiply together to make *ac* and add to make *b*.

<u>Step 2</u>: Split up the *bx* term using the numbers found in step 1.

<u>Step 3</u>: Factorise the front and back pair of expressions as fully as possible.

<u>Step 4</u>: There should be a common bracket. Take this out as a common factor.

Example 2: Factorise $6x^2 + x - 12$.

Solution: We need to find two numbers that multiply to make $6 \times -12 = -72$ and add to make 1. These two numbers are -8 and 9.

Therefore,

e,
$$6x^2 + x - 12 = 6x^2 - 8x + 9x - 12$$

= $2x(3x - 4) + 3(3x - 4)$
= $(3x - 4)(2x + 3)$

(the two brackets must be identical)

Difference of two squares: Factorising quadratics of the form $x^2 - a^2$

Remember that $x^2 - a^2 = (x + a)(x - a)$.			
Therefore: $x^2 - 9$	$y = x^2 - 3^2 = (x+3)(x-3)$		
$16x^2 -$	$-25 = (2x)^2 - 5^2 = (2x+5)(2x-5)$		
Also notice that:	$2x^{2} - 8 = 2(x^{2} - 4) = 2(x + 4)(x - 4)$		
and	$3x^{3} - 48xy^{2} = 3x(x^{2} - 16y^{2}) = 3x(x + 4y)(x - 4y)$		

Factorising by pairing

We can factorise expressions like $2x^2 + xy - 2x - y$ using the method of factorising by pairing:

 $2x^{2} + xy - 2x - y = x(2x + y) - 1(2x + y)$ (factorise front and back pairs, ensuring both brackets are identical) = (2x + y)(x - 1)

If you need **more help** with factorising, you can download a booklet from this website:

http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/web-factorisingquadratics.pdf

Exercise B

Factorise

- $x^2 x 6$ 1) 2) $x^2 + 6x - 16$ $2x^2 + 5x + 2$ 3) $2x^2 - 3x$ 4)
 - (factorise by taking out a common factor)
- $3x^2 + 5x 2$ 5)
- $2y^2 + 17y + 21$ 6)
- $7y^2 10y + 3$ 7)
- $10x^2 + 5x 30$ 8)
- $4x^2 25$ 9)
- $x^2 3x xy + 3y^2$ 10)
- $4x^2 12x + 8$ 11)
- $16m^2 81n^2$ 12)
- $4y^3 9a^2y$ 13)
- $8(x+1)^2 2(x+1) 10$ 14)