Chapter 4: FACTORISING

Common factors

We can factorise some expressions by taking out a common factor.
Example 1: Factorise $12 x-30$
Solution: 6 is a common factor to both 12 and 30 . We can therefore factorise by taking 6 outside a bracket:

$$
12 x-30=6(2 x-5)
$$

Example 2: Factorise $6 x^{2}-2 x y$
Solution: $\quad 2$ is a common factor to both 6 and 2. Both terms also contain an x.
So we factorise by taking $2 x$ outside a bracket.

$$
6 x^{2}-2 x y=2 x(3 x-y)
$$

Example 3: Factorise $9 x^{3} y^{2}-18 x^{2} y$
Solution: $\quad 9$ is a common factor to both 9 and 18.
The highest power of x that is present in both expressions is x^{2}.
There is also a y present in both parts.
So we factorise by taking $9 x^{2} y$ outside a bracket:

$$
9 x^{3} y^{2}-18 x^{2} y=9 x^{2} y(x y-2)
$$

Example 4: Factorise $3 x(2 x-1)-4(2 x-1)$
Solution: There is a common bracket as a factor.
So we factorise by taking $(2 x-1)$ out as a factor.
The expression factorises to $(2 x-1)(3 x-4)$

Exercise A

Factorise each of the following

1) $3 x+x y$
2) $4 x^{2}-2 x y$
3) $p q^{2}-p^{2} q$
4) $3 p q-9 q^{2}$
5) $2 x^{3}-6 x^{2}$
6) $8 a^{5} b^{2}-12 a^{3} b^{4}$
7) $5 y(y-1)+3(y-1)$

Factorising quadratics

Simple quadratics: Factorising quadratics of the form $x^{2}+b x+c$
The method is:
Step 1: Form two brackets $(x \ldots)(x \ldots)$
Step 2: Find two numbers that multiply to give c and add to make b. These two numbers get written at the other end of the brackets.

Example 1: Factorise $x^{2}-9 x-10$.
Solution: We need to find two numbers that multiply to make -10 and add to make -9 . These numbers are -10 and 1 .
Therefore $x^{2}-9 x-10=(x-10)(x+1)$.

General quadratics: Factorising quadratics of the form $a x^{2}+b x+c$
The method is:
Step 1: Find two numbers that multiply together to make $a c$ and add to make b.
Step 2: Split up the $b x$ term using the numbers found in step 1.
Step 3: Factorise the front and back pair of expressions as fully as possible.
Step 4: There should be a common bracket. Take this out as a common factor.
Example 2: Factorise $6 x^{2}+x-12$.
Solution: We need to find two numbers that multiply to make $6 \times-12=-72$ and add to make 1 . These two numbers are -8 and 9 .

Therefore, $\quad 6 x^{2}+x-12=6 \underbrace{x^{2}-8 x}+\underbrace{9 x-12}$

$$
\begin{aligned}
& =2 x(3 x-4)+3(3 x-4) \quad \text { (the two brackets must be identical) } \\
& =(3 x-4)(2 x+3)
\end{aligned}
$$

Difference of two squares: Factorising quadratics of the form $x^{2}-a^{2}$

Remember that $x^{2}-a^{2}=(x+a)(x-a)$.
Therefore: $\quad x^{2}-9=x^{2}-3^{2}=(x+3)(x-3)$

$$
16 x^{2}-25=(2 x)^{2}-5^{2}=(2 x+5)(2 x-5)
$$

Also notice that:

$$
\begin{aligned}
& 2 x^{2}-8=2\left(x^{2}-4\right)=2(x+4)(x-4) \\
& 3 x^{3}-48 x y^{2}=3 x\left(x^{2}-16 y^{2}\right)=3 x(x+4 y)(x-4 y)
\end{aligned}
$$

and

Factorising by pairing

We can factorise expressions like $2 x^{2}+x y-2 x-y$ using the method of factorising by pairing:

$$
\begin{aligned}
2 x^{2}+x y-2 x-y & =x(2 x+y)-1(2 x+y) \quad \text { (factorise front and back pairs, ensuring both } \\
& =(2 x+y)(x-1) \quad \text { brackets are identical) }
\end{aligned}
$$

If you need more help with factorising, you can download a booklet from this website:
http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/web-factorisingquadratics.pdf

Exercise B

Factorise

1) $x^{2}-x-6$
2) $x^{2}+6 x-16$
3) $2 x^{2}+5 x+2$
4) $2 x^{2}-3 x$ (factorise by taking out a common factor)
5) $3 x^{2}+5 x-2$
6) $2 y^{2}+17 y+21$
7) $7 y^{2}-10 y+3$
8) $10 x^{2}+5 x-30$
9) $4 x^{2}-25$
10) $x^{2}-3 x-x y+3 y^{2}$
11) $4 x^{2}-12 x+8$
12) $16 m^{2}-81 n^{2}$
13) $4 y^{3}-9 a^{2} y$
14) $8(x+1)^{2}-2(x+1)-10$
