## Chapter 5: CHANGING THE SUBJECT OF A FORMULA

We can use algebra to change the subject of a formula. Rearranging a formula is similar to solving an equation - we must do the same to both sides in order to keep the equation balanced.

Example 1: Make $x$ the subject of the formula $y=4 x+3$.

## Solution:

Subtract 3 from both sides:
Divide both sides by 4 ;

$$
\begin{gathered}
y=4 x+3 \\
y-3=4 x \\
\frac{y-3}{4}=x
\end{gathered}
$$

So $x=\frac{y-3}{4}$ is the same equation but with $x$ the subject.

Example 2: Make $x$ the subject of $y=2-5 x$
Solution: Notice that in this formula the $x$ term is negative.

$$
\begin{aligned}
& y=2-5 x \\
& y+5 x=2 \\
& 5 x=2-y \\
& x=\frac{2-y}{5}
\end{aligned} \quad \text { (the } x \text { term is now positive) }
$$

Example 3: The formula $C=\frac{5(F-32)}{9}$ is used to convert between ${ }^{\circ}$ Fahrenheit and ${ }^{\circ} \mathrm{Celsius}$.
We can rearrange to make $F$ the subject.

$$
C=\frac{5(F-32)}{9}
$$

Multiply by 9
$9 C=5(F-32) \quad$ (this removes the fraction)
Expand the brackets
Add 160 to both sides
$9 C=5 F-160$
$9 C+160=5 F$
Divide both sides by 5

$$
\frac{9 C+160}{5}=F
$$

Therefore the required rearrangement is $F=\frac{9 C+160}{5}$.

## Exercise A

Make $x$ the subject of each of these formulae:

1) $y=7 x-1$
2) $y=\frac{x+5}{4}$
3) $4 y=\frac{x}{3}-2$
4) $y=\frac{4(3 x-5)}{9}$

Example 4: Make $x$ the subject of $x^{2}+y^{2}=w^{2}$

## Solution:

Subtract $y^{2}$ from both sides:
Square root both sides:

$$
x^{2}+y^{2}=w^{2}
$$

$x^{2}=w^{2}-y^{2} \quad$ (this isolates the term involving $x$ )
$x= \pm \sqrt{w^{2}-y^{2}}$
Remember that you can have a positive or a negative square root. We cannot simplify the answer any more.

Example 5: Make $a$ the subject of the formula $t=\frac{1}{4} \sqrt{\frac{5 a}{h}}$

## Solution:

Multiply by 4
Square both sides

$$
16 t^{2}=\frac{5 a}{h}
$$

Multiply by $h$ :
$t=\frac{1}{4} \sqrt{\frac{5 a}{h}}$
$4 t=\sqrt{\frac{5 a}{h}}$

Divide by 5 :

$$
16 t^{2} h=5 a
$$

$\frac{16 t^{2} h}{5}=a$

## Exercise B:

Make $t$ the subject of each of the following

1) $\quad P=\frac{w t}{32 r}$
2) $\quad P=\frac{w t^{2}}{32 r}$
3) $V=\frac{1}{3} \pi t^{2} h$
4) $P=\sqrt{\frac{2 t}{g}}$
5) $P a=\frac{w(v-t)}{g}$
6) $r=a+b t^{2}$

## More difficult examples

Sometimes the variable that we wish to make the subject occurs in more than one place in the formula. In these questions, we collect the terms involving this variable on one side of the equation, and we put the other terms on the opposite side.

Example 6: Make $t$ the subject of the formula $a-x t=b+y t$
Solution:

$$
a-x t=b+y t
$$

Start by collecting all the t terms on the right hand side:
Add $x t$ to both sides:

$$
a=b+y t+x t
$$

Now put the terms without a $t$ on the left hand side:

Subtract $b$ from both sides:
Factorise the RHS:
Divide by $(y+x)$ : $\quad \frac{a-b}{y+x}=t$
So the required equation is

$$
t=\frac{a-b}{y+x}
$$

Example 7: Make $W$ the subject of the formula $T-W=\frac{W a}{2 b}$
Solution: This formula is complicated by the fractional term. We begin by removing the fraction:
Multiply by $2 b$ :
Add $2 b W$ to both sides:
Factorise the RHS:
Divide both sides by $a+2 b$ :

$$
\begin{aligned}
2 b T-2 b W & =W a \\
2 b T & =W a+2 b W \quad \text { (this collects the W's together) } \\
2 b T & =W(a+2 b) \\
W & =\frac{2 b T}{a+2 b}
\end{aligned}
$$

If you need more help you can download an information booklet on rearranging equations from the following website:
http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/web-formulae2-tom.pdf

## Exercise C

Make $x$ the subject of these formulae:

1) $a x+3=b x+c$
2) $3(x+a)=k(x-2)$
3) $y=\frac{2 x+3}{5 x-2}$
4) $\frac{x}{a}=1+\frac{x}{b}$
