Chapter 8: SURDS

Surds are square roots of numbers which don't simplify into a whole (or rational) number: e.g. $\sqrt{2} \approx 1.414213...$ but it is more accurate to leave it as a surd: $\sqrt{2}$

General rules $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $\sqrt{a} \times \sqrt{a} = \sqrt{a^2} = a$ But you cannot do: $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$ These are NOT equal $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = \sqrt{a^2} + \sqrt{ab} - \sqrt{ab} - \sqrt{b^2} = a - b$

Simplifying Surds

Find the largest square numbers and simplify as far as possible

Worked Examples

 $\sqrt{18} = \sqrt{2 \times 9} = \sqrt{2} \times \sqrt{9} = \sqrt{2} \times 3 = 3\sqrt{2}$ Careful - this is "3 times the square root of 2" NOT

"the cube root of 2"

Rationalising the Denominator

This is a fancy way of saying getting rid of the surd on the bottom of a fraction. We multiply the fraction by the denominator (or the denominator with the sign swapped)

Worked Examples

1. Rationalise
$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3}$$
 we multiply by $\frac{a}{a}$ which is the same as
multiplying by 1, which means we don't fundamentally change the fraction.
2. Rationalise $\frac{3}{2\sqrt{5}} = \frac{3}{2\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3 \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} = \frac{3\sqrt{5}}{10}$
3. Rationalise $\frac{1}{\sqrt{5} + \sqrt{2}} = \frac{1}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{1 \times (\sqrt{5} - \sqrt{2})}{(\sqrt{5} + \sqrt{2}) \times (\sqrt{5} - \sqrt{2})}$
 $= \frac{\sqrt{5} - \sqrt{2}}{(\sqrt{5^2} + \sqrt{2} \times \sqrt{5} - \sqrt{2} \times \sqrt{5} - \sqrt{2^2})} = \frac{\sqrt{5} - \sqrt{2}}{5 + \sqrt{10} - \sqrt{10} - 2} = \frac{\sqrt{5} - \sqrt{2}}{3}$
4. Rationalise $\frac{\sqrt{2}}{3\sqrt{2} - 1} = \frac{\sqrt{2}}{3\sqrt{2} - 1} \times \frac{3\sqrt{2} + 1}{3\sqrt{2} + 1} = \frac{\sqrt{2} \times (3\sqrt{2} + 1)}{(3\sqrt{2} - 1) \times (3\sqrt{2} + 1)}$
 $= \frac{3\sqrt{2^2} + \sqrt{2}}{(3^2\sqrt{2^2} + 3\sqrt{2} - 3\sqrt{2} - 1^2)} = \frac{3 \times 2 + \sqrt{2}}{9 \times 2 - 1} = \frac{6 + \sqrt{2}}{17}$

Exercise A:

Simplify the surds

- 1) $\sqrt{12}$
- 2) $\sqrt{125}$
- 3) \sqrt{48}
- **4**) √72
- √27

Exercise B:

Expand and simplify

- 1) $\sqrt{2}(3+\sqrt{5})$ 2) $\sqrt{6}(\sqrt{2}+\sqrt{8})$ 3) $4(\sqrt{5}+3)$ 4) $(2+\sqrt{3})(1+\sqrt{3})$ 5) $(3-\sqrt{5})(3-2\sqrt{5})$ 6) $(2+\sqrt{5})(2+\sqrt{3})$ 7) $(1-\sqrt{2})(1+\sqrt{3})$ 8) $(8-\sqrt{2})(8+\sqrt{2})$
- 9) $(\sqrt{3} + \sqrt{5})(\sqrt{3} + \sqrt{5})$

Exercise C:

Rewrite the following expressions with rational denominators

1)	$\frac{3}{\sqrt{5}}$	7)	$\frac{1}{\sqrt{3}-1}$
2)	$\frac{4}{\sqrt{8}}$	8)	$\frac{4}{\sqrt{6}-2}$
3)	$\frac{9}{\sqrt{48}}$	9)	$\frac{7}{\sqrt{7}-2}$
4)	$\frac{\sqrt{2}+1}{2}$	10)	$\frac{-3}{\sqrt{5}+1}$
5)	$\frac{\sqrt{3}-1}{\sqrt{5}}$	11)	$\frac{\sqrt{3}-1}{\sqrt{5}}$
6)	$-\frac{4}{3\sqrt{2}}$	12)	$\frac{\sqrt{5}-1}{\sqrt{5}+3}$