Chapter 8: SURDS

Surds are square roots of numbers which don't simplify into a whole (or rational) number: e.g. $\sqrt{2} \approx 1.414213 \ldots$ but it is more accurate to leave it as a surd: $\sqrt{2}$

General rules

$$
\begin{aligned}
& \sqrt{a} \times \sqrt{b}=\sqrt{a b} \\
& \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\
& \sqrt{a} \times \sqrt{a}=\sqrt{a^{2}}=a
\end{aligned}
$$

But you cannot do:

$$
\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}
$$

These are NOT equal
$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=\sqrt{a^{2}}+\sqrt{a b}-\sqrt{a b}-\sqrt{b^{2}}=a-b$

Simplifying Surds

Find the largest square numbers and simplify as far as possible

Worked Examples

$$
\sqrt{18}=\sqrt{2 \times 9}=\sqrt{2} \times \sqrt{9}=\sqrt{2} \times 3=3 \sqrt{2} \quad \text { Careful - this is " } 3 \text { times the square root of } 2 \text { " NOT }
$$ "the cube root of 2"

Rationalising the Denominator

This is a fancy way of saying getting rid of the surd on the bottom of a fraction. We multiply the fraction by the denominator (or the denominator with the sign swapped)

Worked Examples

1. Rationalise $\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{\sqrt{3}}{3} \quad$ we multiply by $\frac{a}{a}$ which is the same as multiplying by 1 , which means we don't fundamentally change the fraction.
2. Rationalise $\frac{3}{2 \sqrt{5}}=\frac{3}{2 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \times \sqrt{5}}{2 \sqrt{5} \times \sqrt{5}}=\frac{3 \sqrt{5}}{10}$
3. Rationalise $\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{1}{\sqrt{5}+\sqrt{2}} \times \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}=\frac{1 \times(\sqrt{5}-\sqrt{2})}{(\sqrt{5}+\sqrt{2}) \times(\sqrt{5}-\sqrt{2})}$

$$
=\frac{\sqrt{5}-\sqrt{2}}{\left(\sqrt{5^{2}}+\sqrt{2} \times \sqrt{5}-\sqrt{2} \times \sqrt{5}-\sqrt{2^{2}}\right)}=\frac{\sqrt{5}-\sqrt{2}}{5+\sqrt{10}-\sqrt{10}-2}=\frac{\sqrt{5}-\sqrt{2}}{3}
$$

4. Rationalise $\frac{\sqrt{2}}{3 \sqrt{2}-1}=\frac{\sqrt{2}}{3 \sqrt{2}-1} \times \frac{3 \sqrt{2}+1}{3 \sqrt{2}+1}=\frac{\sqrt{2} \times(3 \sqrt{2}+1)}{(3 \sqrt{2}-1) \times(3 \sqrt{2}+1)}$

$$
=\frac{3 \sqrt{2^{2}}+\sqrt{2}}{\left(3^{2} \sqrt{2^{2}}+3 \sqrt{2}-3 \sqrt{2}-1^{2}\right)}=\frac{3 \times 2+\sqrt{2}}{9 \times 2-1}=\frac{6+\sqrt{2}}{17}
$$

Exercise A:

Simplify the surds

1) $\sqrt{12}$
2) $\sqrt{125}$
3) $\sqrt{48}$
4) $\sqrt{72}$
5) $\sqrt{27}$

Exercise B:

Expand and simplify

1) $\sqrt{2}(3+\sqrt{5})$
2) $\sqrt{6}(\sqrt{2}+\sqrt{8})$
3) $4(\sqrt{5}+3)$
4) $(2+\sqrt{3})(1+\sqrt{3})$
5) $(3-\sqrt{5})(3-2 \sqrt{5)}$
6) $(2+\sqrt{5})(2+\sqrt{3})$
7) $(1-\sqrt{2})(1+\sqrt{3})$
8) $(8-\sqrt{2})(8+\sqrt{2})$
9) $(\sqrt{3}+\sqrt{5})(\sqrt{3}+\sqrt{5})$

Exercise C:

Rewrite the following expressions with rational denominators

1) $\frac{3}{\sqrt{5}}$
2) $\frac{4}{\sqrt{8}}$
3) $\frac{9}{\sqrt{48}}$
4) $\frac{\sqrt{2}+1}{2}$
5) $\frac{\sqrt{3}-1}{\sqrt{5}}$
6) $-\frac{4}{3 \sqrt{2}}$
7) $\frac{1}{\sqrt{3}-1}$
8) $\frac{4}{\sqrt{6}-2}$
9) $\frac{7}{\sqrt{7}-2}$
10) $\frac{-3}{\sqrt{5}+1}$
11) $\frac{\sqrt{3}-1}{\sqrt{5}}$
12) $\frac{\sqrt{5}-1}{\sqrt{5}+3}$
