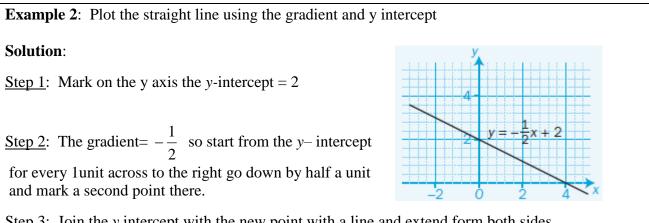

Chapter 9: Straight line graphs

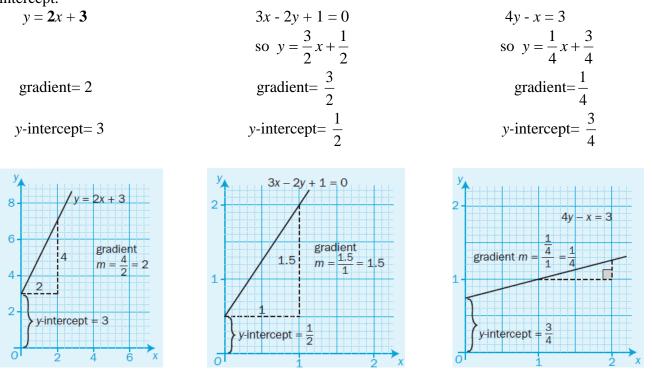
Step 2: Use your table to draw the straight line graph

Linear functions can be written in the form y = mx + c, where m and c are constants. A linear function is represented graphically by a straight line, m is the gradients and c is the yintercept of the graph.



Solution:

Step 1: Make a table of values


x	0	2	4
y	1	5	9

10

Step 3: Join the y intercept with the new point with a line and extend form both sides.

Here are some examples of linear functions not all of them in the form y = mx + c. You need to be confident into rearranging the functions making y the subject in order to identify the gradient and yintercept.

To find the *y*-axis crossing, substitute x = 0 into the linear equation and solve for *y*. To find the *x*-axis crossing, substitute y = 0 into the linear equation and solve for *x*.

Example 3: Rewrite the equation 3y - 2x = 5 into the form y = mx + c, find the gradient and the y-
interceptSolution:Step 1: Add 2x to both sides (so that the x term is positive):3y = 5 + 2xStep 2: Divide by 3 both sides: $y = \frac{2}{3}x + \frac{5}{3}$ Step 3: Identify the gradient and y-interceptgradient = $\frac{2}{3}$ y-intercept = $\frac{5}{3}$

Example 4: Find the gradient of the line which passes through the points A (1, 4) and B (-3, 2) **Solution**: <u>Step 1</u>: Use the *x* and *y* values of A (x_1, y_1) and B (x_2, y_2) $m = \frac{2-4}{-3-1} = \frac{-2}{-4} = \frac{1}{2}$ <u>Step 2</u>: find the gradient $m = \frac{y_2 - y_1}{x_2 - x_1}$

Finally you need to be able to find the equation of a line from a graph.

Example 5: Find the equation of the straight line which passes through the point (1, 3) and has gradient 2 **Solution:** <u>Step 1</u>: Find where the line crosses the y axis. This is the y intercept, c. Line crosses y axis at 5, so y-intercept c=5 <u>Step 2</u>: Draw a triangle below the line from the intercept to a point you know And work out the gradient between the two points $m = \frac{y_2 - y_1}{x_2 - x_1}$ Gradient triangle from (-6,3) to (0,5) so $m = \frac{5-3}{0--6} = \frac{2}{6} = \frac{1}{3}$

<u>Step 3</u>: Write in the form y = mx + c $y = \frac{1}{3}x + 5$

Exercise A: Plot the graph of each function taking the given values

a) y = x - 3 (x = -2 to 4)

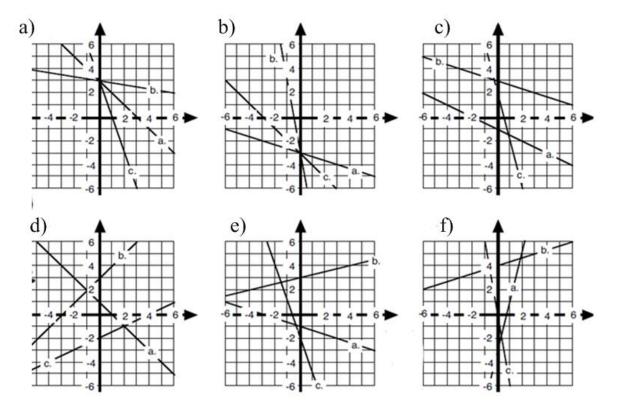
- b) y=-x+4 (x = -2 to 5)
- c) y = 2x 3 (x = -1 to 5)
- d) y = -3x + 5 (x = -2 to 3)

Exercise B:

Rewrite the equations below into the form y = mx + c, find the gradient and the y-intercept

a)3x - 2y - 2 = 0 b) x + 2y - 8 = 0 c) 5 = 4x - 2y

Then plot the graph of each equation


Exercise C:

Work out the gradient between the sets of coordinates

- a) A (0, 2) and B(3, 6)
- b) A (1, 0) and B(3, -2)
- c) A (1, -3) and B(2, -4)
- d) A (-4, 2) and B(3, 5)
- e) A (1, 0.5) and B(5, -2)
- f) A (-7, -3) and B(-2, -6)

Exercise D:

Find the equation of these lines in the form

