Chapter 9: Straight line graphs

Linear functions can be written in the form $y=m x+c$, where m and c are constants.
A linear function is represented graphically by a straight line, m is the gradients and c is the y intercept of the graph.

Example 1: Draw the graph of $y=2 x+1$

Solution:

Step 1: Make a table of values

\boldsymbol{x}	0	2	4
\boldsymbol{y}	1	5	9

Step 2: Use your table to draw the straight line graph

Example 2: Plot the straight line using the gradient and y intercept

Solution:

Step 1: Mark on the y axis the y-intercept $=2$

Step 2: The gradient $=-\frac{1}{2}$ so start from the y-intercept for every lunit across to the right go down by half a unit and mark a second point there.

Step 3: Join the y intercept with the new point with a line and extend form both sides.

Here are some examples of linear functions not all of them in the form $y=m x+c$. You need to be confident into rearranging the functions making y the subject in order to identify the gradient and y intercept.
$y=2 x+3$

$$
\begin{aligned}
& 3 x-2 y+1=0 \\
& \text { so } y=\frac{3}{2} x+\frac{1}{2}
\end{aligned}
$$

$$
\text { gradient }=\frac{3}{2}
$$

$$
y \text {-intercept }=\frac{1}{2}
$$

$$
\begin{aligned}
& 4 y-x=3 \\
& \text { so } y=\frac{1}{4} x+\frac{3}{4}
\end{aligned}
$$

$$
\text { gradient }=\frac{1}{4}
$$

$$
y \text {-intercept }=\frac{3}{4}
$$

To find the y-axis crossing, substitute $x=0$ into the linear equation and solve for y.
To find the x-axis crossing, substitute $y=0$ into the linear equation and solve for x.

Example 3: Rewrite the equation $3 y-2 x=5$ into the form $y=m x+c$, find the gradient and the y intercept
Solution:
Step 1:
Add $2 x$ to both sides (so that the x term is positive):

$$
\begin{aligned}
& 3 y=5+2 x \\
& y=\frac{2}{3} x+\frac{5}{3}
\end{aligned}
$$

Step 2: Divide by 3 both sides:

Step 3: Identify the gradient and y-intercept

$$
\text { gradient }=\frac{2}{3} \quad y \text {-intercept }=\frac{5}{3}
$$

Example 4: Find the gradient of the line which passes through the points A $(1,4)$ and $B(-3,2)$

Solution:

Step 1: Use the x and y values of A $\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

$$
m=\frac{2-4}{-3-1}=\frac{-2}{-4}=\frac{1}{2}
$$

Step 2: find the gradient $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Finally you need to be able to find the equation of a line from a graph.
Example 5: Find the equation of the straight line which passes through the point $(1,3)$ and has gradient 2

Solution:

Step 1: Find where the line crosses the y axis.
This is the y intercept, c.

Step 2: Draw a triangle below the line from the intercept to a point you know
And work out the gradient between the two points $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\text { Gradient triangle from }(-6,3) \text { to }(0,5) \text { so } m=\frac{5-3}{0--6}=\frac{2}{6}=\frac{1}{3}
$$

Step 3: Write in the form $y=m x+c$

$$
y=\frac{1}{3} x+5
$$

Exercise A: Plot the graph of each function taking the given values
a) $y=x-3 \quad(x=-2$ to 4$)$
b) $y=-x+4(x=-2$ to 5$)$
c) $y=2 x-3(x=-1$ to 5$)$
d) $y=-3 x+5(x=-2$ to 3$)$

Exercise B:

Rewrite the equations below into the form $y=m x+c$, find the gradient and the y-intercept
a) $3 x-2 y-2=0$
b) $x+2 y-8=0$
c) $5=4 x-2 y$

Then plot the graph of each equation

Exercise C:

Work out the gradient between the sets of coordinates
a) $A(0,2)$ and $B(3,6)$
b) $\mathrm{A}(1,0)$ and $\mathrm{B}(3,-2)$
c) $\mathrm{A}(1,-3)$ and $\mathrm{B}(2,-4)$
d) $\mathrm{A}(-4,2)$ and $\mathrm{B}(3,5)$
e) $\mathrm{A}(1,0.5)$ and $\mathrm{B}(5,-2)$
f) $\mathrm{A}(-7,-3)$ and $\mathrm{B}(-2,-6)$

Exercise D:

Find the equation of these lines in the form
a)

