Chapter 10: INEQUALITIES

Inequalities are like equations, but instead of having an equals sign, they have an inequality sign. The smaller end of the arrow points to the smaller number.
$a<2$ [a is less than 2]
$\mathrm{b}>\mathrm{c}$ [b is greater than c , but also c is less than b]
$x \leq 3$ and $3 \geq x$ [both mean that x is the less than or equal to 3]
$a>-2$ can be shown on a number line:
[the hollow circle means it cannot be equal to -2]

$-1 \leq x<3$ can also be shown on a number line:
[the solid circle means it can also be equal to -1]

Exercise A

1. Write down the inequalities shown on the number line:

2. Show the following inequalities on a number line:
(a) $\quad x>2$
(b) $x<5$
(c) $\quad x \geq 0$
(d) $x \leq-1$
(e) $\quad x>1$ and $x<3$
(f) $\quad x>-1$ and $x \leq 0$
(g) $\quad x \geq-4$ and $x \leq-1$
(h) $-1<x \leq 3$
(i) $-4 \leq x<0$
(j) $-5<x \leq-2$

Solving Linear Inequalities

Treat the inequality as if it is an equals sign, with one exception - multiplying or dividing by a negative number will reverse (flip) the inequality sign.

Worked Examples

1. $7+1 / 2 \mathrm{a} \geq 10$
$1 / 2 a \geq 3$
$a \geq 6$
2. $3 b-4<5 b+8$
$-2 b-4<8$
$-2 b<12$
[group a's and numbers together, -7 from both sides]
[multiply by 2 to get a singular]
[group b's together, subtract 5b]
[group numbers together, add 4]
[divide by -2 to get b singular, flip inequality]

Exercise B

1. (i) Solve the inequality

$$
5 x-7<2 x-1
$$

(ii) On the number line, represent the solution set to part (i).

Solve the following inequalities:
2. $5 x+12>2$
3. $3 x+2>-7$
4. $4 x-3<7$
5. $5 x+3>19$
6. $7 x-3>17$
7. $3 x \geq x+7$
8. $5 x<2 x-6$
9. $6 x<7+4 x$
10. $4 \mathrm{p}-8<7-\mathrm{p}$
11. $7 x+9>3 x+1$
12. $5-3 x>2(x+1)$

