Chapter 10: INEQUALITIES

Inequalities are like equations, but instead of having an equals sign, they have an inequality sign. The smaller end of the arrow points to the smaller number.

a < 2 [a is less than 2] b > c [b is greater than c, but also c is less than b] $x \le 3$ and $3 \ge x$ [both mean that x is the less than or equal to 3] \cap a > -2 can be shown on a number line: [the hollow circle means it cannot be equal to -2] -4 -3 .2 0 $-1 \le x < 3$ can also be shown on a number line: [the solid circle means it can also be equal to -1] L I I I Т -3 -2 -1 0 1 2 3 4 -4

Exercise A

1. Write down the inequalities shown on the number line:

а	• • • • • • • • • • • • • • • • • • • •	b 🖛0
-		-5 -4 -3 -2 -1 0 1 2 3 4 5
c	• — •	d
		d
	-5-4-3-2-10 1 2 3 4 5	-5 -4 -3 -2 -1 0 1 2 3 4 5
e		f

2. Show the following inequalities on a number line:

(a)	<i>x</i> > 2	(b)	<i>x</i> < 5	(c)	$x \ge 0$		(d)	$x \leq -1$
(e)	x > 1 and $x <$	3	(f)	$x > -1$ and $x \le$	<u> 6</u> 0	(g)	$x \ge -4$	and $x \leq -1$
(h)	$-1 < x \le 3$		(i)	$-4 \le x < 0$		(j)	-5 < x	≤-2

Solving Linear Inequalities

Treat the inequality as if it is an equals sign, with *one exception* – multiplying or dividing by a negative number will reverse (flip) the inequality sign.

Worked Examples

1. $7 + \frac{1}{2} a \ge 10$ $\frac{1}{2} a \ge 3$ $a \ge 6$	[group a's and numbers together, -7 from both sides] [multiply by 2 to get a singular]
2. 3b - 4 < 5b + 8	[group b's together, subtract 5b]
-2b - 4 < 8	[group numbers together, add 4]
-2b < 12	[divide by -2 to get b singular, <i>flip inequality</i>]

Exercise B

1. (i) Solve the inequality

$$5x - 7 < 2x - 1$$

(ii) On the number line, represent the solution set to part (i).

Solve the following inequalities:

- 2. 5x + 12 > 2
- 3. 3x + 2 > -7
- 4. 4x 3 < 7
- 5. 5x + 3 > 19
- 6. 7x 3 > 17
- 7. $3x \ge x + 7$
- 8. 5x < 2x 6
- 9. 6x < 7 + 4x
- 10. 4p 8 < 7 p
- 11. 7x + 9 > 3x + 1
- 12. 5 3x > 2(x + 1)